

HEA-003-1163005 Seat No. _____

M. Sc. (Mathematics) (Sem. III) (CBCS) Examination

November/December - 2017

Differential Geometry: EMT-3011

(New Course)

Faculty Code: 003

Subject Code: 1163005

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) There are five questions.

- (2) Attempt all the questions.
- (3) Figures to the right indicate full marks.
- 1 Attempt any seven:

14

- (1) Define: Regular curve.
- (2) Define: Tangent vector field.
- (3) Is the curve $\alpha(t) = (t^3, t^2, 2t)$ regular? Justify your answer.
- (4) Define: Arc length.
- (5) Define: Unit speed curve.
- (6) Define: The tangent space and the normal space.
- (7) Define: Normal curvature and Geodesic curvature.
- (8) Define: Simple surface.
- (9) Define: Tangent vector to a simple surface.
- (10) Define: Proper cp-ordinate patch.

2 Attempt the following:

- (a) Define: Reparametrization. If $g:[c,d] \to [a,b]$ is a reparametrization of a curve segment $\alpha:[a,b] \to R^3$ then show that the length of α is equal to the length of $\beta = \alpha \circ g$.
- (b) Reparametrize the curve $\alpha(t) = (r \cos t, r \sin t, 0)$ by its arc length and also find its curvature (where r > 0).

OR

- (b) Find the arc length of the helix $\alpha(t) = (a \cos t, a \sin t, at \tan \alpha).$
- 3 Attempt the following:
 - (a) For the circular helix $\alpha(t) = (r \cos \omega s, r \sin \omega s, h \omega s)$, compute Frenet Serret appartus (where $\omega = (r^2 + h^2)^{-\frac{1}{2}}$)

OR

(a) Show that $\alpha(s) = \left(\frac{(1+s)\frac{3}{2}}{3}, \frac{(1-s)\frac{3}{2}}{3}, \frac{s}{\sqrt{2}}\right)$ is a unit

speed curve and compute its Frenet - Serret appartus.

(b) Show that $\alpha(s) = \frac{1}{2} \left(\cos^{-1} s, s \sqrt{1 - s^2}, 1 - s^2, 0 \right)$ is a unit speed curve and compute its Frenet - Serret appartus.

14

14

4 Attempt the following:

14

- (a) State and prove Frenet Serret theorem.
- (b) Let $\alpha(s)$ be a unit speed curve whose image lies on a sphere of radius r and centre m then show that $k \neq 0$. Also if $\tau \neq 0$ then $\alpha - m = -\rho N - \rho' \sigma \beta$ and $r^2 = \rho^2 + (\rho' \sigma)^2$ (where $\rho = \frac{1}{k}$ and $\sigma = \frac{1}{\tau}$).
- 5 Attempt any two:

14

- (a) If $x: u \to R^3$ is a simple surface and $f: v \to u$ is a co-ordinate transformation such that $y = x \circ f$ then prove that
 - (i) The tangent plane to the simple surface x at P = x(f(a,b)) is equal to the tangent plane to the simple surface y at P = y(a,b).
 - (ii) The normal to the surface x at p is same as the normal to the surface y at p except possibly it may have the opposite sign.
- (b) Prove that: The set of all tangent vectors to a simple surface $x: u \to R^3$ at P is a vector space.
- (c) Find the co-efficient of second fundamental form and Christoffel symbols for the surface

$$x\left(u',u^{2}\right) = \left(u',u^{2},f\left(u',u^{2}\right)\right).$$